Conflict-free vertex connection number at most 3 and size of graphs
نویسندگان
چکیده
منابع مشابه
Bounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملVertex 3-colorability of Claw-free Graphs
The 3-colorability problem is NP-complete in the class of clawfree graphs and it remains hard in many of its subclasses obtained by forbidding additional subgraphs. (Line graphs and claw-free graphs of vertex degree at most four provide two examples.) In this paper we study the computational complexity of the 3-colorability problem in subclasses of claw-free graphs defined by finitely many forb...
متن کاملNordhaus-Gaddum-type theorem for conflict-free connection number of graphs∗
An edge-colored graph G is conflict-free connected if, between each pair of distinct vertices, there exists a path containing a color used on exactly one of its edges. The conflict-free connection number of a connected graph G, denoted by cfc(G), is defined as the smallest number of colors that are needed in order to make G conflict-free connected. In this paper, we determine all trees T of ord...
متن کاملRainbow Vertex-Connection Number of 3-Connected Graph
A path in an edge colored graph is said to be a rainbow path if every edge in this colored with the same color. A vertex-colored graph G is rainbow vertex-connected if any pair of vertices in G are connected by a path whose internal vertices have distinct colors. The rainbow vertexconnection number of G denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainb...
متن کاملFeedback vertex set on AT-free graphs
We present a polynomial time algorithm to compute a minimum (weight) feedback vertex set for AT-free graphs, and extending this approach we obtain a polynomial time algorithm for graphs of bounded asteroidal number.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2021
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.2211